TREES

- In this session, you will learn to:
 - Store data in a tree
 - Distinguish types of Binary tree
 - Traverse a Binary Tree
 - InOrder
 - PreOrder
 - PostOrder
 - Construct a Binary Tree
 - Construct an expression Binary tree

Storing Data in a Tree

- Consider a scenario where you are required to represent the directory structure of your operating system.
- The directory structure contains various folders and files. A folder may further contain any number of sub folders and files.
- In such a case, it is not possible to represent the structure linearly because all the items have a hierarchical relationship among themselves.
- In such a case, it would be good if you have a data structure that enables you to store your data in a nonlinear fashion.

Defining Trees

- A tree is a nonlinear data structure that represent a hierarchical relationship among the various data elements.
- Trees are used in applications in which the relation between data elements needs to be represented in a hierarchy.

Defining Trees (Contd.)

- Each element in a tree is referred to as a node.
- The topmost node in a tree is called root.

Defining Trees (Contd.)

Each node in a tree can further have subtrees below its hierarchy.

Tree Terminology

- Let us discuss various terms that are most frequently used with trees.
 - Leaf node: It refers to a node with no children.

- Subtree: A portion of a tree, which can be viewed as a separate tree in itself is called a subtree.
 - A subtree can also contain just one node called the root node.
- Children of a node: The roots of the subtrees of a node are called the children of the node.

- **Edge**: A link from the parent to a child node is referred to as an edge.
- Degree of a node: It refers to the number of subtrees of a node in a tree.

 Siblings/Brothers: It refers to the children of the same node.

- Internal node: It refers to any node between the root and a leaf node.
- Level of a node: It refers to the distance (in number of nodes) of a node from the root. Root always lies at level 0.

As you move down the tree, the level increases by one.

- Depth of a tree: Refers to the total number of levels in the tree.
 - The depth of the following tree is 4.

Just a minute

Consider the following tree and answer the questions that follow:

- a. What is the depth of the tree?
- b. Which nodes are children of node B?
- c. Which node is the parent of node F?
- d. What is the level of node E?
- e. Which nodes are the siblings of node H?
- f. Which nodes are the siblings of node D?
- g. Which nodes are leaf nodes?

- a. 4
- b. D and E
- c. C
- d. 2
- e. H does not have any siblings
- f. The only sibling of D is E
- g. F, G, H, and I

Defining Binary Trees

- Binary tree is a specific type of tree in which each node can have at most two children namely left child and right child.
- There are various types of binary trees:
 - Strictly binary tree
 - Full binary tree
 - Complete binary tree
- Strictly binary tree:
 - A binary tree in which every node, except for the leaf nodes, has non-empty left and right children.

Defining Binary Trees (Contd.)

Full binary tree:

A binary tree of depth d that contains exactly 2^d- 1 nodes.

Depth = 3 Total number of nodes = 2^3 - 1 = 7

Defining Binary Trees (Contd.)

Complete binary tree:

 A binary tree with n nodes and depth d whose nodes correspond to the nodes numbered from 0 to n - 1 in the full binary tree of depth k.

Full Binary Tree

Complete Binary Tree

Incomplete Binary Tree

Representing a Binary Tree

- Array representation of binary trees:
 - All the nodes are represented as the elements of an array.

- If there are n nodes in a binary tree, then for any node with index i, where 0 < i < n – 1:</p>
 - Parent of i is at (i 1)/2.
 - Left child of i is at 2i + 1:
 - If 2i + 1 > n 1, then the node does not have a left child.
 - Right child of i is at 2i + 2:
 - If 2i + 2 > n 1, then the node does have a right child.

Binary Tree

Representing a Binary Tree (Contd.)

- Linked representation of a binary tree:
 - It uses a linked list to implement a binary tree.
 - Each node in the linked representation holds the following information:
 - 🔶 Data
 - Reference to the left child
 - Reference to the right child
 - If a node does not have a left child or a right child or both, the respective left or right child fields of that node point to NULL.

Representing a Binary Tree (Contd.)

Binary Tree

Linked Representation

Binary Tree Node

Struct node { Int info; Struct node *left,*right; }

OPERATIONS ON TREES

Traversing a Binary Tree

1)TRAVERSING

- You can implement various operations on a binary tree.
- A common operation on a binary tree is traversal.
- Traversal refers to the process of visiting all the nodes of a binary tree once.
- There are three ways for traversing a binary tree:
 - Inorder traversal
 - Preorder traversal
 - Postorder traversal

INORDER TRAVERSAL

- Steps for traversing a tree in inorder sequence are as follows:
 - 1. Traverse the left subtree
 - 2. Visit root
 - 3. Traverse the right subtree
- Let us consider an example.

The left subtree of node A is not NULL.

Therefore, move to node B to traverse the left subtree of B.

The left subtree of node D is NULL.

Therefore, visit node D.

D

Right subtree of D is not NULL

Therefore, move to the right subtree of node D

Left subtree of H is empty.

Therefore, visit node H.

DH

Right subtree of H is empty.

Therefore, move to node B.

DH

The left subtree of B has been visited.

Therefore, visit node B.

DHB

Right subtree of B is not empty.

Therefore, move to the right subtree of B.

DHB

Left subtree of E is empty.

Therefore, visit node E.

DHBE

Right subtree of E is empty.

Therefore, move to node A.

DHBE

Left subtree of A has been visited.

Therefore, visit node A.

Right subtree of A is not empty.

Therefore, move to the right subtree of A.

Left subtree of C is not empty.

Therefore, move to the left subtree of C.

DHBEA

Left subtree of F is empty.

Therefore, visit node F.

DHBEAF

Right subtree of F is empty.

Therefore, move to node C.

DHBEAF

The left subtree of node C has been visited.

Therefore, visit node C.

D H B E A F C

Right subtree of C is not empty.

Therefore, move to the right subtree of node C.

Left subtree of G is not empty.

Therefore, move to the left subtree of node G.

Left subtree of I is empty.

Therefore, visit I.

Right subtree of I is empty.

Therefore, move to node G.

Visit node G.

Right subtree of G is empty.

ALGORITHM

ALGORITHM INORDERTRAVERSE()

{

}

- 1. set top=0, stack[top]=NULL, ptr = root
- 2. Repeat while ptr!=NULL
 - 2.1 set top=top+1
 - 2.2 set stack[top]=ptr
 - 2.3 set ptr=ptr->left
- 3. Set ptr=stack[top], top=top-1
- 4. Repeat while ptr!=NULL
 - 4.1 print ptr->info
 - 4.2 if ptr->right!=NULL then
 - 4.2.1set ptr=ptr->right
 - 4.2.2 goto step 2
 - 4.3 Set ptr=stack[top], top=top-1

PREORDER TRAVERSAL

- Steps for traversing a tree in preorder sequence are as follows:
 - 1. Visit root
 - 2. Traverse the left subtree
 - 3. Traverse the right subtree

Perform the preorder traversal of the following tree.

Preorder Traversal: A B D H E C F G I

ALGORITHM

ALGORITHM PREORDERTRAVERSE()

- 1. set top=0, stack[top]=NULL, ptr = root
- 2. Repeat while ptr!=NULL
 - 2.1 print ptr -> info

{

}

- 2.2 if (ptr -> right != NULL)
 - 2.2.1 top = top + 1
 - 2.2.2 set stack [top] = $ptr \rightarrow right$
- 2.3 if (ptr -> left != NULL)
 - 2.3.1 ptr=ptr -> left

else

2.3.1 ptr=stack[top], top=top-1

Postorder Traversal

- Steps for traversing a tree in postorder sequence are as follows:
 - 1. Traverse the left subtree
 - 2. Traverse the right subtree
 - 3. Visit the root

Postorder Traversal (Contd.)

Perform the postorder traversal of the following tree.

Postorder Traversal: H D E B F I G C A

ALGORITHM POSTORDERTRAVERSE()

- 1. set top = 0, stack [top] = NULL, ptr = root
- 2. Repeat while ptr!=NULL
- 2.1 top = top +1 , stack [top] = ptr
 2.2 if (ptr -> right != NULL)
 2.2.1 top = top +1
 2.2.2 set stack [top] = (ptr -> right)
 2.3 ptr = ptr -> left
 3. ptr = stack [top], top = top-1
 4. Repeat while (ptr > 0)
 - 4.1 print ptr -> info
 - 4.2 ptr = stack [top], top = top-1
- 5. if (ptr < 0)
 - 5.1 set ptr = ptr5.2 Go to step 2
- }

{

Recursive Traversal Implementation

void print_preorder(tree t)

- **if** (NULL == t) {
- } else {
 printf("%c", t->value);
- print_preorder(t->left);
 print_preorder(t->right);

void print_inorder(tree t) { if (NULL == t) { } else { print_inorder(t->left); printf("%c", t->value); } }

print_inorder(t->right);

Just a minute

In ______ traversal method, root is processed before traversing the left and right subtrees.

Expression Binary Tree Traversal

If an expression is represented as a binary tree, the inorder traversal of the tree gives us an infix expression, whereas the postorder traversal gives us a postfix expression as shown in Figure.

Inorder : a + b * c + d * e postorder : abc*+de*+

Construction of Binary Tree

Given an order of traversal of a tree, it is possible to construct a tree; for example, consider the following order:

```
Inorder = DBEAC
```

We can construct the binary trees shown in Figure by using this order of traversal

Construction of Binary Tree

- Therefore, we conclude that given only one order of traversal of a tree, it is possible to construct a number of binary trees; a unique binary tree cannot be constructed with only one order of traversal.
- For construction of a unique binary tree, we require two orders, in which one has to be inorder; the other can be preorder or postorder. For example, consider the following orders:

Inorder = DBEAC

Postorder = DEBCA

Construction of Binary Tree

Inorder = DBEAC

Postorder = DEBCA

We can construct the unique binary tree shown in Figure by using these orders of traversal:

A unique binary tree constructed using its inorder and postorder.

Just a minute

- Construct the binary tree with the following:-
- Inorder:- DHBEAFCIG
- Postorder:- H D E B F I G C A

Postorder Traversal (Contd.)

Summary

In this session, you learned that:

- A tree is a nonlinear data structure that represents a hierarchical relationship among the various data elements.
- A binary tree is a specific type of tree in which each node can have a maximum of two children.
- Binary trees can be implemented by using arrays as well as linked lists, depending upon requirement.
- Traversal of a tree is the process of visiting all the nodes of the tree once. There are three types of traversals, namely inorder, preorder, and postorder traversal.