
TREES

Objectives In this session, you will learn to:
Store data in a tree

Distinguish types of Binary tree

Traverse a Binary Tree

InOrder

PreOrder

PostOrder

Construct a Binary Tree

Construct an expression Binary tree

Storing Data in a Tree

Consider a scenario where you are required to represent the directory structure
of your operating system.

The directory structure contains various folders and files. A folder may further
contain any number of sub folders and files.

In such a case, it is not possible to represent the structure linearly because all
the items have a hierarchical relationship among themselves.

In such a case, it would be good if you have a data structure that enables you to
store your data in a nonlinear fashion.

Directory structure:

A tree is a nonlinear data structure that represent a
hierarchical relationship among the various data elements.

A

B C D

I JH KG

L M

FE

Defining Trees

Trees are used in applications in which the relation between
data elements needs to be represented in a hierarchy.

Each element in a tree is referred to as a node.

The topmost node in a tree is called root.

root

Defining Trees (Contd.)

node

A

B C D

I JH KG

L M

FE

Each node in a tree can further have subtrees below its hierarchy.

root

Defining Trees (Contd.)

node

A

B C D

I JH KG

L M

FE

Tree Terminology

Leaf node: It refers to a node with no children.

 Nodes E, F, G, H, I, J,
L, and M are leaf
nodes.

A

B C D

I JH KG

L M

FE

Let us discuss various terms that are most frequently used with trees.

Subtree: A portion of a tree, which can be viewed as a separate tree
in itself is called a subtree.

A subtree can also contain just one node called the root node.

Children of a node: The roots of the subtrees of a node are
called the children of the node.

Tree Terminology (Contd.)

 Tree with root B, containing
nodes E, F, G, and H is a
subtree of node A.

 E, F, G, and H are children of
node B. B is the parent of
these nodes.

A

B C D

I JH KG

L M

FE

Degree of a node: It refers to the number of subtrees of a node in a
tree.

Tree Terminology (Contd.)

 Degree of node C is 1

 Degree of node D is 2

 Degree of node A is 3

 Degree of node B is 4

A

B C D

I JH KG

L M

FE

Edge: A link from the parent to a child node is referred to as an edge.

Edge

 Nodes B, C, and D are
siblings of each other.

 Nodes E, F, G, and H are
siblings of each other.

Siblings/Brothers: It refers to the children of the same
node.

Tree Terminology (Contd.)

A

B C D

I JH KG

L M

FE

Level of a node: It refers to the distance (in number of nodes) of a
node from the root. Root always lies at level 0.

As you move down the tree, the level increases by one.

Tree Terminology (Contd.)

Internal node: It refers to any node between the root and a leaf node.

 Nodes B, C, D, and K
are internal nodes.

Level 0

Level 1

Level 2

Level 3

A

B C D

I JH KG

L M

FE

Tree Terminology (Contd.)

Depth of a tree: Refers to the total number of levels in the
tree.

The depth of the following tree is 4.

Level 0

Level 1

Level 2

Level 3

A

B C D

I JH KG

L M

FE

Consider the following tree and answer the questions
that follow:
a. What is the depth of the tree?

b. Which nodes are children of node B?

c. Which node is the parent of node F?

d. What is the level of node E?

e. Which nodes are the siblings of node H?

f. Which nodes are the siblings of node D?

g. Which nodes are leaf nodes?

Just a minute

A

B

F G

C

ED

H I

root

Answer:
a. 4

b. D and E

c. C

d. 2

e. H does not have any siblings

f. The only sibling of D is E

g. F, G, H, and I

Strictly binary tree:
A binary tree in which every node, except for the leaf nodes,
has non-empty left and right children.

Defining Binary Trees

Binary tree is a specific type of tree in which each node can
have at most two children namely left child and right child.

There are various types of binary trees:
Strictly binary tree

Full binary tree

Complete binary tree

Full binary tree:

A binary tree of depth d that contains exactly 2d– 1
nodes.

A

B C

D E F G

 Depth = 3

 Total number of
nodes = 23– 1 = 7

Defining Binary Trees (Contd.)

Complete binary tree:
A binary tree with n nodes and depth d whose nodes
correspond to the nodes numbered from 0 to n − 1 in the full
binary tree of depth k.

A

B C

D E F

Complete Binary Tree

A

B C

D E G

Incomplete Binary Tree

Defining Binary Trees (Contd.)

A

B C

D E F

Full Binary Tree

G

0

1 2

6543

0

1 2

3 4 5

0

1 2

3 4 5

Representing a Binary Tree

Array representation of binary trees:
All the nodes are represented as the elements of an array.

A

B C

D E F G

A

B

C

D

E

G

F

[0]

[1]

[2]

[3]

[4]

[5]

[6]

0

1 2

3 4 5 6

Binary Tree Array Representation

If there are n nodes in a binary
tree, then for any node with index
i, where 0 < i < n – 1:

Parent of i is at (i – 1)/2.

Left child of i is at 2i + 1:

If 2i + 1 > n – 1, then
the node does not
have a left child.

Right child of i is at 2i + 2:

If 2i + 2 > n – 1, then
the node does have a

right child.

Linked representation of a binary tree:
It uses a linked list to implement a binary tree.

Each node in the linked representation holds the following
information:

Data

Reference to the left child

Reference to the right child

If a node does not have a left child or a right child or both, the
respective left or right child fields of that node point to NULL.

Data

Node

Representing a Binary Tree (Contd.)

52

68

59 7224

8070

36

.

.

..

..

..

52

36 68

24 59 72

70 80

Binary Tree Linked Representation

root root

Representing a Binary Tree (Contd.)

Binary Tree Node

 Struct node

 {

 Int info;

 Struct node *left,*right;

 }

1)TRAVERSING

You can implement various operations on a binary tree.

A common operation on a binary tree is traversal.

Traversal refers to the process of visiting all the nodes of a
binary tree once.

There are three ways for traversing a binary tree:
Inorder traversal

Preorder traversal

Postorder traversal

Traversing a Binary Tree

OPERATIONS ON TREES

Steps for traversing a tree in inorder sequence are as
follows:

 1. Traverse the left subtree

 2. Visit root

 3. Traverse the right subtree

Let us consider an example.

INORDER TRAVERSAL

Inorder Traversal (Contd.)

A

C

E

B

F GD

H

I

root

The left subtree of node B is not NULL.

Therefore, move to node D to traverse the left
subtree of B.

The left subtree of node A is not NULL.

Therefore, move to node B to traverse the left
subtree of A.

Inorder Traversal (Contd.)

The left subtree of node D is NULL.

Therefore, visit node D.

D

A

C

E

B

F GD

H

I

root

Inorder Traversal (Contd.)

Right subtree of D is not NULL

Therefore, move to the right subtree of node D

D

A

C

E

B

F GD

H

I

root

Inorder Traversal (Contd.)

Left subtree of H is empty.

Therefore, visit node H.

D H

A

C

E

B

F GD

H

I

root

Inorder Traversal (Contd.)

Right subtree of H is empty.

Therefore, move to node B.

D H

A

C

E

B

F GD

H

I

root

Inorder Traversal (Contd.)

The left subtree of B has been visited.

Therefore, visit node B.

D H B

A

C

E

B

F GD

H

I

root

Inorder Traversal (Contd.)

Right subtree of B is not empty.

Therefore, move to the right subtree of B.

D H B

A

C

E

B

F GD

H

I

root

Inorder Traversal (Contd.)

Left subtree of E is empty.

Therefore, visit node E.

D H EB

A

C

E

B

F GD

H

I

root

Inorder Traversal (Contd.)

Right subtree of E is empty.

Therefore, move to node A.

D H EB

A

C

E

B

F GD

H

I

root

Inorder Traversal (Contd.)

Left subtree of A has been visited.

Therefore, visit node A.

D H EB A

A

C

E

B

F GD

H

I

root

Inorder Traversal (Contd.)

Right subtree of A is not empty.

Therefore, move to the right subtree of A.

D H EB A

A

C

E

B

F GD

H

I

root

Inorder Traversal (Contd.)

Left subtree of C is not empty.

Therefore, move to the left subtree of C.

D H EB A

A

C

E

B

F GD

H

I

root

Inorder Traversal (Contd.)

Left subtree of F is empty.

Therefore, visit node F.

D H EB A F

A

C

E

B

F GD

H

I

root

Inorder Traversal (Contd.)

Right subtree of F is empty.

Therefore, move to node C.

D H EB A F

A

C

E

B

F GD

H

I

root

Inorder Traversal (Contd.)

The left subtree of node C has been visited.

Therefore, visit node C.

D H EB A F C

A

C

E

B

F GD

H

I

root

Inorder Traversal (Contd.)

Right subtree of C is not empty.

Therefore, move to the right subtree of node C.

D H EB A F C

A

C

E

B

F GD

H

I

root

Inorder Traversal (Contd.)

Left subtree of G is not empty.

Therefore, move to the left subtree of node G.

D H EB A F C

A

C

E

B

F GD

H

I

root

Inorder Traversal (Contd.)

Left subtree of I is empty.

Therefore, visit I.

D H EB A F C I

A

C

E

B

F GD

H

I

root

Inorder Traversal (Contd.)

Right subtree of I is empty.

Therefore, move to node G.

D H EB A F C I

A

C

E

B

F GD

H

I

root

Inorder Traversal (Contd.)

Visit node G.

D H EB A F C I G

A

C

E

B

F GD

H

I

root

Inorder Traversal (Contd.)

Right subtree of G is empty.

D H EB A F C I G

Traversal complete

A

C

E

B

F GD

H

I

root

ALGORITHM
ALGORITHM INORDERTRAVERSE()

{

 1. set top=0, stack[top]=NULL, ptr = root

 2. Repeat while ptr!=NULL

 2.1 set top=top+1

 2.2 set stack[top]=ptr

 2.3 set ptr=ptr->left

 3. Set ptr=stack[top], top=top-1

 4. Repeat while ptr!=NULL

 4.1 print ptr->info

 4.2 if ptr->right!=NULL then

 4.2.1set ptr=ptr->right

 4.2.2 goto step 2

 4.3 Set ptr=stack[top], top=top-1

}

Steps for traversing a tree in preorder sequence are as
follows:

 1. Visit root

 2. Traverse the left subtree

 3. Traverse the right subtree

PREORDER TRAVERSAL

Preorder Traversal (Contd.)

A

C

E

B

F GD

H

I
Perform the preorder traversal of the following tree.

A B D H E C F G IPreorder Traversal:

ALGORITHM
ALGORITHM PREORDERTRAVERSE()

{

 1. set top=0, stack[top]=NULL, ptr = root

 2. Repeat while ptr!=NULL

2.1 print ptr -> info

2.2 if (ptr -> right != NULL)

2.2.1 top = top +1

2.2.2 set stack [top] = ptr -> right

2.3 if (ptr -> left != NULL)

2.3.1 ptr=ptr -> left

 else

2.3.1 ptr=stack[top], top=top-1

}

Postorder Traversal

Steps for traversing a tree in postorder sequence are as
follows:
1. Traverse the left subtree

2. Traverse the right subtree

3. Visit the root

Postorder Traversal (Contd.)

A

C

E

B

F GD

H

I
Perform the postorder traversal of the following tree.

H D E B F I G C APostorder Traversal:

ALGORITHM
ALGORITHM POSTORDERTRAVERSE()

{

 1. set top = 0, stack [top] = NULL, ptr = root

 2. Repeat while ptr!=NULL

2.1 top = top +1 , stack [top] = ptr

2.2 if (ptr -> right != NULL)

2.2.1 top = top +1

2.2.2 set stack [top] = - (ptr -> right)

2.3 ptr = ptr -> left

 3. ptr = stack [top], top = top-1

 4. Repeat while (ptr > 0)

4.1 print ptr -> info

4.2 ptr = stack [top], top = top-1

 5. if (ptr < 0)

5.1 set ptr = - ptr

5.2 Go to step 2

}

Recursive Traversal
Implementation

In _________ traversal method, root is processed before
traversing the left and right subtrees.

Just a minute

Answer:
Preorder

Expression Binary Tree Traversal
If an expression is represented as a binary tree, the

inorder traversal of the tree gives us an infix expression,

whereas the postorder traversal gives us a postfix

expression as shown in Figure.

Construction of Binary Tree
Given an order of traversal of a tree, it is possible to construct a tree;

for example, consider the folowing order:

Inorder = DBEAC

We can construct the binary trees shown in Figure by using this order

of traversal

Construction of Binary Tree
Therefore, we conclude that given only one order of traversal of a

tree, it is possible to construct a number of binary trees; a
unique binary tree cannot be constructed with only one order of
traversal.

For construction of a unique binary tree, we require two orders, in
which one has to be inorder; the other can be preorder or
postorder. For example, consider the following orders:

Inorder = DBEAC

Postorder = DEBCA

Construction of Binary Tree
Inorder = DBEAC

Postorder = DEBCA

We can construct the unique binary tree shown in Figure by

using these orders of traversal:

A unique binary tree constructed using its inorder and postorder.

Just a minute

• Construct the binary tree with the
following:-

• Inorder:- D H B E A F C I G

• Postorder:- H D E B F I G C A

Postorder Traversal (Contd.)

A

C

E

B

F GD

H

I

In this session, you learned that:
A tree is a nonlinear data structure that represents a hierarchical
relationship among the various data elements.

A binary tree is a specific type of tree in which each node can have a
maximum of two children.

Binary trees can be implemented by using arrays as well as linked lists,
depending upon requirement.

Traversal of a tree is the process of visiting all the nodes of the tree
once. There are three types of traversals, namely inorder, preorder,
and postorder traversal.

Summary

	TREES
	PowerPoint Presentation
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	OPERATIONS ON TREES
	INORDER TRAVERSAL
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	ALGORITHM
	PREORDER TRAVERSAL
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Expression Binary Tree Traversal
	Construction of Binary Tree
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59

